Orthogonal polynomials and singular Sturm-Liouville Systems, I

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Computing Eigenvalues of Singular Sturm-Liouville Problems

We describe a new algorithm to compute the eigenvalues of singular Sturm-Liouville problems with separated self-adjoint boundary conditions for both the limit-circle nonoscillatory and oscillatory cases. Also described is a numerical code implementing this algorithm and how it compares with SLEIGN. The latter is the only effective general purpose software available for the computation of the ei...

متن کامل

Regular approximations of singular Sturm-Liouville problems

Given any self-adjoint realization S of a singular Sturm-Liouville (S-L) problem, it is possible to construct a sequence {Sr} of regular S-L problems with the properties (i) every point of the spectrum of S is the limit of a sequence of eigenvalues from the spectrum of the individual members of {Sr} (ii) in the case when S is regular or limit-circle at each endpoint, a convergent sequence of ei...

متن کامل

Small Oscillations, Sturm Sequences, and Orthogonal Polynomials

The relation between small oscillations of one-dimensional mechanical «-particle systems and the theory of orthogonal polynomials is investigated. It is shown how the polynomials provide a natural tool to determine the eigenfrequencies and eigencoordinates completely, where the existence of a specific two-termed recurrence formula is essential. Physical and mathematical statements are formulate...

متن کامل

The Askey - Wilson Polynomials and q - Sturm - Liouville Problems

We nd the adjoint of the Askey-Wilson divided di erence operator with respect to the inner product on L 2 ( 1; 1; (1 x 2 ) 1=2 dx) de ned as a Cauchy principal value and show that the Askey-Wilson polynomials are solutions of a q-Sturm-Liouville problem. From these facts we deduce various properties of the polynomials in a simple and straightforward way. We also provide an operator theoretic de...

متن کامل

Sturm - Liouville Systems Are Riesz - Spectral Systems

where x, u and y are the system state, input and output, respectively, A is a densely defined differential linear operator on an (infinite-dimensional) Hilbert space (e.g., L(a, b), a, b ∈ R), which generates a C0-semigroup, and B, C and D are bounded linear operators. Moreover, if A is a Riesz-spectral operator, it possesses several interesting properties, regarding in particular observability...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Rocky Mountain Journal of Mathematics

سال: 1986

ISSN: 0035-7596

DOI: 10.1216/rmj-1986-16-3-435